Building Code of Australia primary referenced Standard

Australian Standard™

Steel structures

This Australian Standard was prepared by Committee BD/1, Steel Structures. It was approved on behalf of the Council of Standards Australia on 17 April 1998 and published on 5 June 1998.

The following interests are represented on Committee BD/1:

Association of Consulting Engineers Australia

Australian Construction Services

Australian Institute of Steel Construction

AUSTROADS

Building Management Authority, W.A.

Bureau of Steel Manufacturers of Australia

CSIRO, Division of Building, Construction and Engineering

Confederation of Australian Industry

Institution of Engineers, Australia

Metal Trades Industry Association of Australia

New Zealand Heavy Engineering Research Association

Public Works Department, N.S.W.

Railways of Australia Committee

University of New South Wales

University of Queensland

University of Sydney

Welding Technology Institute of Australia

Review of Australian Standards. To keep abreast of progress in industry, Australian Standards are subject to periodic review and are kept up to date by the issue of amendments or new editions as necessary. It is important therefore that Standards users ensure that they are in possession of the latest edition, and any amendments thereto. Full details of all Australian Standards and related publications will be found in the Standards Australia Catalogue of Publications; this information is supplemented each month by the magazine 'The Australian Standard', which subscribing members receive, and which gives details of new publications, new editions and amendments, and of withdrawn Standards.

Suggestions for improvements to Australian Standards, addressed to the head office of Standards Australia, are welcomed. Notification of any inaccuracy or amibuity found in an Australian Standard should be made without delay in order that the matter may be investigated and appropriate action taken.

© Copyright — STANDARDS AUSTRALIA

Users of Standards are reminded that copyright subsists in all Standards Australia publications and software. Except where the Copyright Act allows and except where provided for below no publications or software produced by Standards Australia may be reproduced, stored in a retrieval system in any form or transmitted by any means without prior permission in writing from Standards Australia. Permission may be conditional on an appropriate royalty payment. Requests for permission and information on commercial software royalties should be directed to the Head Office of Standards Australia.

Standards Australia will permit up to 10 percent of the technical content pages of a Standard to be copied for use exclusively in-house by purchasers of the Standard without payment of a royalty or advice to Standards Australia.

Standards Australia will also permit the inclusion of its copyright material in computer software programs for no royalty payment provided such programs are used exclusively in-house by the creators of the programs.

Care should be taken to ensure that material used is from the current edition of the Standard and that it is updated whenever the Standard is amended or revised. The number and date of the Standard should therefore be clearly identified.

The use of material in print form or in computer software programs to be used commercially, with or without payment, or in commercial contracts is subject to the payment of a royalty. This policy may be varied by Standards Australia at any time.

This is a free 10 page sample. Access the full version online.

Australian Standard™

Steel structures

Originated in part as SAA INT 351—1956. Previous edition AS 4100—1990. Second edition 1998.

AS 4100—1998 2

PREFACE

This Standard was prepared by the Standards Australia Committee BD/1, Steel Structures, to supersede AS 4100—1990.

The objective of this Standard is to provide designers of steel structures with specifications for steel structural members used for load-carrying purposes in buildings and other structures.

This new edition of the Standard incorporates Amendments No. 1—1992, No. 2—1993, No. 3—1995 and draft Amendment No. 4 issued for public comment as DR 97347. Draft Amendment No. 4 was not published separately as a green slip.

Amendment No. 1—1992 includes the following major changes:

- (a) Strength of steels complying with AS 1163 and AS/NZS 1594. (Table 2.1.)
- (b) Shear buckling capacity for stiffened web. (Clause 5.11.5.2.)
- (c) Bearing buckling capacity. (Clause 5.13.4.)

Amendment No. 2—1993 includes the following major changes:

- (a) Shear and bending interaction method. (Clause 5.12.3.)
- (b) Minimum area for the design of intermediate transverse web stiffeners. (Clause 5.15.3.)
- (c) Section capacity of members subject to combined actions. (Clause 8.3.)
- (d) Strength assessment of a butt weld. (Clause 9.7.2.7.)
- (e) Fatigue. (Section 11.)

Amendment No. 3—1993 includes the following major changes:

- (a) Compressive bearing action on the edge of a web. (Clause 5.13.)
- (b) Section capacity of members subject to combined actions. (Clause 8.3.)
- (c) In-plane and out-of-plane capacity of compression members. (Clauses 8.4.2.2 and 8.4.41.)
- (d) Strength assessment of a butt weld. (Clause 9.7.2.7.)
- (e) Earthquake. (Section 13.)

Amendment No. 4 includes the following major changes:

- (a) Strengths of steels complying with AS/NZS 3678, AS/NZS 3679.1 and AS/NZS 3679.2. (Table 2.1.)
- (b) Minimum edge distance of fasteners. (Clause 9.6.2.)
- (c) Permissible service temperatures according to steel type and thickness. (Table 10.4.1.)
- (d) Steel type relationship to steel grade. (Table 10.4.4.)
- (e) Welding of concentrically braced frames for structures of earthquake Design Category D and E. (Clause 13.3.4.2.)

The terms 'normative' and 'informative' have been used in this Standard to define the application of the appendix to which they apply. A 'normative' appendix is an intrgal part of a Standard, whereas an 'informative' appendix is only for information and guidance.

This is a free 10 page sample. Access the full version online.

CONTENTS

			Page
SEC	CTION	1 SCOPE AND GENERAL	
	1.1	SCOPE AND APPLICATION	8
	1.2	REFERENCED DOCUMENTS	8
	1.3	DEFINITIONS	8
	1.4	NOTATION	11
	1.5	USE OF ALTERNATIVE MATERIALS OR METHODS	21
	1.6	DESIGN	21
	1.7	CONSTRUCTION	22
SEC	CTION	2 MATERIALS	
	2.1	YIELD STRESS AND TENSILE STRENGTH USED IN DESIGN	23
	2.2	STRUCTURAL STEEL	23
	2.3	FASTENERS	23
	2.4	STEEL CASTINGS	24
SEC	CTION	3 GENERAL DESIGN REQUIREMENTS	
	3.1	DESIGN	29
	3.2	LOADS AND OTHER ACTIONS	29
	3.3	STABILITY LIMIT STATE	30
	3.4	STRENGTH LIMIT STATE	30
	3.5	SERVICEABILITY LIMIT STATE	31
	3.6	STRENGTH AND SERVICEABILITY LIMIT STATES BY LOAD	
		TESTING	
	3.7	BRITTLE FRACTURE	
	3.8	FATIGUE	
	3.9	FIRE	
	3.10	EARTHQUAKE	
	3.11	OTHER DESIGN REQUIREMENTS	32
SEC	CTION	4 METHODS OF STRUCTURAL ANALYSIS	
	4.1	METHODS OF DETERMINING ACTION EFFECTS	33
	4.2	FORMS OF CONSTRUCTION ASSUMED FOR STRUCTURAL ANALYSIS	33
	4.3	ASSUMPTIONS FOR ANALYSIS	
	4.4	ELASTIC ANALYSIS	34
	4.5	PLASTIC ANALYSIS	39
	4.6	MEMBER BUCKLING ANALYSIS	40
	17	ED AME BLICKLING ANALYSIS	13

			Pag
SI	ECTION	15 MEMBERS SUBJECT TO BENDING	
	5.1	DESIGN FOR BENDING MOMENT	45
	5.2	SECTION MOMENT CAPACITY FOR BENDING ABOUT A PRINCIPAL AXIS	45
	5.3	MEMBER CAPACITY OF SEGMENTS WITH FULL LATERAL RESTRAINT	48
	5.4	RESTRAINTS	49
	5.5	CRITICAL FLANGE	53
	5.6	MEMBER CAPACITY OF SEGMENTS WITHOUT FULL LATERAL RESTRAINT	53
	5.7	BENDING IN A NON-PRINCIPAL PLANE	59
	5.8	SEPARATORS AND DIAPHRAGMS	59
	5.9	DESIGN OF WEBS	59
	5.10	ARRANGEMENT OF WEBS	60
	5.11	SHEAR CAPACITY OF WEBS	61
	5.12	INTERACTION OF SHEAR AND BENDING	64
	5.13	COMPRESSIVE BEARING ACTION ON THE EDGE OF A WEB	65
	5.14	DESIGN OF LOAD BEARING STIFFENERS	69
	5.15	DESIGN OF INTERMEDIATE TRANSVERSE WEB STIFFENERS	71
	5.16	DESIGN OF LONGITUDINAL WEB STIFFENERS	73
SI	ECTION	MEMBERS SUBJECT TO AXIAL COMPRESSION	
	6.1	DESIGN FOR AXIAL COMPRESSION	74
	6.2	NOMINAL SECTION CAPACITY	74
	6.3	NOMINAL MEMBER CAPACITY	76
	6.4	LACED AND BATTENED COMPRESSION MEMBERS	80
	6.5	COMPRESSION MEMBERS BACK TO BACK	82
	6.6	RESTRAINTS	83
SI	ECTION	17 MEMBERS SUBJECT TO AXIAL TENSION	
	7.1	DESIGN FOR AXIAL TENSION	84
	7.2	NOMINAL SECTION CAPACITY	84
	7.3	DISTRIBUTION OF FORCES	84
	7.4	TENSION MEMBERS WITH TWO OR MORE MAIN COMPONENTS	85
	7.5	MEMBERS WITH PIN CONNECTIONS	86
SI	ECTION	N 8 MEMBERS SUBJECT TO COMBINED ACTIONS	
	8.1	GENERAL	87
	8.2	DESIGN ACTIONS	87
	8.3	SECTION CAPACITY	87
	8.4	MEMBER CAPACITY	89

		Page
SECTION	9 CONNECTIONS	
9.1	GENERAL	95
9.2	DEFINITIONS	98
9.3	DESIGN OF BOLTS	99
9.4	ASSESSMENT OF THE STRENGTH OF A BOLT GROUP	102
9.5	DESIGN OF A PIN CONNECTION	102
9.6	DESIGN DETAILS FOR BOLTS AND PINS	103
9.7	DESIGN OF WELDS	104
9.8	ASSESSMENT OF THE STRENGTH OF A WELD GROUP	113
9.9	PACKING IN CONSTRUCTION	114
SECTION	10 BRITTLE FRACTURE	
10.1	METHODS	115
10.2	NOTCH-DUCTILE RANGE METHOD	115
10.3	DESIGN SERVICE TEMPERATURE	115
10.4	MATERIAL SELECTION	115
10.5	FRACTURE ASSESSMENT	118
SECTION	111 FATIGUE	
11.1	GENERAL	119
11.2	FATIGUE LOADING	121
11.3	DESIGN SPECTRUM	121
11.4	EXEMPTION FROM ASSESSMENT	122
11.5	DETAIL CATEGORY	123
11.6	FATIGUE STRENGTH	134
11.7	EXEMPTION FROM FURTHER ASSESSMENT	136
11.8	FATIGUE ASSESSMENT	136
11.9	PUNCHING LIMITATION	136
SECTION	I 12 FIRE	
12.1	REQUIREMENTS	137
12.2	DEFINITIONS	137
12.3	DETERMINATION OF PERIOD OF STRUCTURAL ADEQUACY	137
12.4	VARIATION OF MECHANICAL PROPERTIES OF STEEL WITH TEMPERATURE	138
12.5	DETERMINATION OF LIMITING STEEL TEMPERATURE	138
12.6	DETERMINATION OF TIME AT WHICH LIMITING TEMPERATURE IS ATTAINED FOR PROTECTED MEMBERS	139
12.7	DETERMINATION OF TIME AT WHICH LIMITING TEMPERATURE IS ATTAINED FOR UNPROTECTED MEMBERS	141
12.9	DETERMINATION OF DCA FROM A CINCLE TEST	1.40

AS 4100—1998

	Page
12.9 THREE-SIDED FIRE EXPOSURE CONDITION	142
12.10 SPECIAL CONSIDERATIONS	142
SECTION 13 EARTHQUAKE	
13.1 GENERAL	
13.2 DEFINITIONS	
13.3 DESIGN AND DETAILING REQUIREMENTS	
13.4 DESIGN REQUIREMENTS FOR NON-BUILDING STRUCTU	RES 147
SECTION 14 FABRICATION	
14.1 GENERAL	
14.2 MATERIAL	
14.3 FABRICATION PROCEDURES	
14.4 TOLERANCES	151
SECTION 15 ERECTION	
15.1 GENERAL	156
15.2 ERECTION PROCEDURES	
15.3 TOLERANCES	
15.4 INSPECTION OF BOLTED CONNECTIONS	
15.5 GROUTING AT SUPPORTS	163
SECTION 16 MODIFICATION OF EXISTING STRUCTURES	
16.1 GENERAL	
16.2 MATERIALS	
16.3 CLEANING	
16.4 SPECIAL PROVISIONS	164
SECTION 17 TESTING OF STRUCTURES OR ELEMENTS	
17.1 GENERAL	
17.2 DEFINITIONS	
17.3 TEST REQUIREMENTS	
17.4 PROOF TESTING	
17.5 PROTOTYPE TESTING	
17.6 REPORT OF TESTS	
APPENDICES	
A REFERENCED DOCUMENTS	167
B SUGGESTED DEFLECTION LIMITS	
C CORROSION PROTECTION	170
D ADVANCED STRUCTURAL ANALYSIS	172
E SECOND ORDER ELASTIC ANALYSIS	
F MOMENT AMPLIFICATION FOR A SWAY MEMBER	174

	7	AS 4100—1998
		Page
G	BRACED MEMBER BUCKLING IN FRAMES	175
Н	ELASTIC RESISTANCE TO LATERAL BUCKLING	177
I	STRENGTH OF STIFFENED WEB PANELS UNDER COMBINED ACTIONS	182
J	STANDARD TEST FOR EVALUATION OF SLIP FACTOR	184
K	INSPECTION OF BOLT TENSION USING A TORQUE WRENCH	188
INDEV		190

AS 4100—1998 8

STANDARDS AUSTRALIA

Australian Standard

Steel structures

SECTION 1 SCOPE AND GENERAL

1.1 SCOPE AND APPLICATION

1.1.1 Scope This Standard sets out minimum requirements for the design, fabrication, erection, and modification of steelwork in structures in accordance with the limit states design method.

This Standard applies to buildings, structures and cranes constructed of steel.

This Standard is intended to apply also to roadway, railway, and pedestrian bridges. However, the requirements given in this Standard may not always be sufficient for bridge applications. In these circumstances, the specifications of the relevant Authority shall be used.

This Standard does not apply to the following structures and materials:

- (a) Steel elements less than 3 mm thick, with the exception of sections complying with AS 1163 and packers.
- (b) Steel members for which the value of the yield stress used in design (f_v) exceeds 450 MPa.
- (c) Cold-formed members, other than those complying with AS 1163, which shall be designed in accordance with AS/NZS 4600.
- (d) Composite steel-concrete members, which shall be designed in accordance with AS 2327.

NOTE: The general principles of design, fabrication, erection, and modification embodied in this Standard may be applied to steel-framed structures or members not specifically mentioned herein.

- **1.1.2 Application** This Standard will be referenced in the Building Code of Australia by way of BCA Amendment No. 3 to be published by 1 July 1998, thereby superseding the previous edition, AS 4100—1990, which will be withdrawn 12 months from the date of publication of this edition.
- **1.2 REFERENCED DOCUMENTS** The documents referred to in this Standard are listed in Appendix A.
- **1.3 DEFINITIONS** For the purpose of this Standard, the definitions below apply. Definitions peculiar to a particular Clause or Section are also given in that Clause or Section.

Action—the cause of stress or deformations in a structure.

Action effect or load effect—the internal force or bending moment due to actions or loads.

Authority—a body having statutory powers to control the design and erection of a structure.

Bearing-type connection—connection effected using either snug-tight bolts, or high-strength bolts tightened to induce a specified minimum bolt tension, in which the design action is transferred by shear in the bolts and bearing on the connected parts at the strength limit state.

Bearing-wall system—see AS 1170.4.

Braced frame—see AS 1170.4.

Braced member—one for which the transverse displacement of one end of the member relative to the other is effectively prevented.

Building frame system—see AS 1170.4.

The remainder of this document is available for purchase online at

www.saiglobal.com/shop

