AS 3600—2001 (Incorporating Amendment No. 1 and Amendment No. 2)

# Australian Standard<sup>™</sup>

## **Concrete structures**



This Australian Standard was prepared by Committee BD-002, Concrete Structures. It was approved on behalf of the Council of Standards Australia on 11 April 2001. This Standard was published on 5 June 2001.

The following are represented on Committee BD-002:

**AUSTROADS** Australian Building Codes Board Australian Pre-Mixed Concrete Association Bureau of Steel Manufacturers of Australia Cement & Concrete Association of Australia Concrete Institute of Australia Curtin University of Technology Institution of Engineers Australia Master Builders Australia National Precast Concrete Association Australia Steel Reinforcement Institute of Australia The Association of Consulting Engineers Australia The University of Adelaide The University of Melbourne The University of New South Wales The University of Western Sydney

#### Keeping Standards up-to-date

Standards are living documents which reflect progress in science, technology and systems. To maintain their currency, all Standards are periodically reviewed, and new editions are published. Between editions, amendments may be issued. Standards may also be withdrawn. It is important that readers assure themselves they are using a current Standard, which should include any amendments which may have been published since the Standard was purchased.

Detailed information about Standards can be found by visiting the Standards Web Shop at www.standards.com.au and looking up the relevant Standard in the on-line catalogue.

Alternatively, the printed Catalogue provides information current at 1 January each year, and the monthly magazine, *The Global Standard*, has a full listing of revisions and amendments published each month.

Australian Standards<sup>TM</sup> and other products and services developed by Standards Australia are published and distributed under contract by SAI Global, which operates the Standards Web Shop.

We also welcome suggestions for improvement in our Standards, and especially encourage readers to notify us immediately of any apparent inaccuracies or ambiguities. Contact us via email at mail@standards.org.au, or write to the Chief Executive, Standards Australia International Ltd, GPO Box 5420, Sydney, NSW 2001.

This Standard was issued in draft form for comment as DR 99193.

AS 3600—2001 (Incorporating Amendment No. 1 and Amendment No. 2)

# Australian Standard<sup>™</sup>

## **Concrete structures**

Originated as part of AS A26—1934, AS CA2—1934 and MP 13—1957. Previous edition AS 3600—1994. Third edition 2001. Reissued incorporating Amendment No. 1 (May 2002). Reissued incorporating Amendment No. 2 (October 2004)

#### COPYRIGHT

© Standards Australia International

All rights are reserved. No part of this work may be reproduced or copied in any form or by any means, electronic or mechanical, including photocopying, without the written permission of the publisher.

Published by Standards Australia International Ltd GPO Box 5420, Sydney, NSW 2001, Australia

ISBN 0 7337 3931 8

#### PREFACE

This Standard was prepared by Standards Australia Committee BD-002, Concrete Structures, to supersede AS 3600—1994.

This Standard incorporates Amendment No. 1 (May 2002) and Amendment No. 2 (October 2004). The changes required by the Amendment are indicated in the text by a marginal bar and amendment number against the clause, note, table, figure or part thereof affected.

#### **Objective of the Standard**

The principal objective of the Standard is to provide users with nationally acceptable unified rules for the design and detailing of concrete structures and elements, with or without steel reinforcement or prestressing tendons, based on the principles of structural engineering mechanics. The secondary objective is to provide performance criteria against which the finished structure can be assessed for compliance with the relevant design requirements.

#### **Background to the Third Edition**

Amendment No. 1 to the 1994 edition of the Standard was issued in August 1996 to take account of the low ductility of wire to AS 1303 and mesh to AS 1304. It also incorporated improvements based on user experience in implementing AS 3600.

Following a five-year review, further amendments to the Standard were approved by the Concrete Structures Committee in August 1999. These amendments take account of more recent revisions of key materials Standards, and incorporate additional improvements to the clarity and intent of particular requirements, based on user comments.

In view of the number and extent of the amendments to AS 3600 now involved, the SAI Concrete Structures Committee recommended that, rather than issuing further 'green slip' amendments, a Third Edition of AS 3600 be published which incorporated all published and approved amendments, Amendment 1 and 2.

#### Differences between the Second and Third editions of AS 3600

As noted in the opening paragraphs of the Preface, this Edition incorporates Amendment No. 1 of August 1996 and amendments approved in August 1999.

Areas of major change covered in Amendment 2, which have been incorporated into this edition, are as follows:

- 1 Introduction of 500 MPa reinforcing steel with AS/NZS 4671 covering the specification for the new grade of reinforcing steel. The carbon equivalent of the reinforcement has been held to a level so that current practices for site welding of reinforcement including 'locational tack welding' can continue to be used.
- 2 Increase in the maximum concrete compressive strength to 65 MPa.
- 3 Consistency of references and information within AS 1379—*Specification and supply of concrete*, including a change to the basic shrinkage strain value to reflect normal class concrete.
- 4 Fire-resistance periods for the structural adequacy for columns has been revised following research by BRANZ, and allowances for chases and recesses in concrete walls have been included and are consistent with those in AS 3700, *Masonry structures*.
- 5 Linear elastic analysis requirements have been reviewed with consideration of propping, effective stiffness, secondary effects and moment redistribution.

- 6 Beam strength and serviceability design requirements have been significantly reviewed with changes to the minimum strength requirements, deflection by simplified calculation, the deemed to comply span-to-depth ratios, crack control provisions and end anchorage of fitments among others. The maximum transvese bar spacing have also been increased.
- 7 Changes have been made to the rules for flexural crack control of slabs, including reduction of the maximum transverse bar spacing.
- 8 Development length and splicing of reinforcement has been revisited and include amendments to the deemed to comply lengths and the size of bars permitted in tension and compression lapped splices. Rules for welded and mechanical splices have been removed and new rules are under development.
- 9 Material requirements have been updated with reference to the current AS 1379 and the new reinforcing steels to AS/NZS 4671.
- 10 Section 20 has been deleted in its entirety, with all aspects of the testing and assessment of concrete referred to AS 1379.
- 11 Section 21, on the testing of members and structures, has been completely redrafted and relabelled as Appendix B.

The Committee is in the process of a major revision of AS 3600, which includes the areas of high-strength concrete, bond and anchorage requirements and application of mechanical and welded splices.

The terms 'normative' and 'informative' have been used in this Standard to define the application of the appendix to which they apply. A 'normative' appendix is an integral part of a Standard, whereas an 'informative' appendix is only for information and guidance.

### CONTENTS

| SECTIO    | ON 1 SCOPE AND GENERAL                                      |    |
|-----------|-------------------------------------------------------------|----|
| 1.1       | SCOPE AND APPLICATION                                       | 8  |
| 1.2       | REFERENCED DOCUMENTS                                        | 9  |
| 1.3       | USE OF ALTERNATIVE MATERIALS OR METHODS                     | 9  |
| 1.4       | DESIGN                                                      | 9  |
| 1.5       | CONSTRUCTION                                                | 10 |
| 1.6       | DEFINITIONS                                                 | 10 |
| 1.7       | NOTATION                                                    | 14 |
|           |                                                             |    |
| SECTIO    | ON 2 DESIGN REQUIREMENTS AND PROCEDURES                     |    |
| 2.1       | DESIGN REQUIREMENTS                                         | 22 |
| 2.2       | DESIGN FOR STABILITY                                        | 22 |
| 2.3       | DESIGN FOR STRENGTH                                         | 22 |
| 2.4       | DESIGN FOR SERVICEABILITY                                   | 22 |
| 2.5       | DESIGN FOR STRENGTH AND SERVICEABILITY BY LOAD TESTING      |    |
|           | OF A PROTOTYPE                                              | 24 |
| 2.6       | DESIGN FOR DURABILITY                                       | 24 |
| 2.7       | DESIGN FOR FIRE RESISTANCE                                  | 24 |
| 2.8       | OTHER DESIGN REQUIREMENTS                                   | 24 |
|           |                                                             |    |
| SECTIO    | ON 3 LOADS AND LOAD COMBINATIONS FOR STABILITY, STRENGTH AN | ND |
| SERVIO    | CEABILITY                                                   |    |
| 3.1       | LOADS AND OTHER ACTIONS                                     | 25 |
| 3.2       | LOAD COMBINATIONS FOR STABILITY DESIGN                      | 25 |
| 3.3       | LOAD COMBINATIONS FOR STRENGTH DESIGN                       | 26 |
| 3.4       | LOAD COMBINATIONS FOR SERVICEABILITY DESIGN                 | 26 |
| 3.5       | LOAD COMBINATIONS FOR FIRE-RESISTANCE DESIGN                | 26 |
|           |                                                             |    |
| SECTIO    | ON 4 DESIGN FOR DURABILITY                                  |    |
| 4.1       | APPLICATION OF SECTION                                      | 27 |
| 4.2       | DESIGN FOR DURABILITY                                       | 27 |
| 4.3       | EXPOSURE CLASSIFICATION                                     | 27 |
| 4.4       | REQUIREMENTS FOR CONCRETE FOR EXPOSURE CLASSIFICATIONS      |    |
|           | A1 AND A2                                                   | 29 |
| 4.5       | REQUIREMENTS FOR CONCRETE FOR EXPOSURE CLASSIFICATIONS      |    |
|           | B1, B2 AND C                                                | 30 |
| 4.6       | REQUIREMENTS FOR CONCRETE FOR EXPOSURE CLASSIFICATION U     | 30 |
| 4.7       | ADDITIONAL REQUIREMENTS FOR ABRASION                        | 30 |
| 4.8       | ADDITIONAL REQUIREMENTS FOR FREEZING AND THAWING            | 31 |
| 4.9       | RESTRICTIONS ON CHEMICAL CONTENT IN CONCRETE                | 31 |
| 4.10      | REQUIREMENTS FOR COVER TO REINFORCING STEEL AND TENDONS     | 31 |
| ~ ~ ~ ~ ~ |                                                             |    |
| SECTIO    | DN 5 DESIGN FOR FIRE RESISTANCE                             |    |
| 5.1       | SCOPE OF SECTION                                            | 34 |
| 5.2       | DEFINITIONS                                                 | 34 |
| 5.3       | DESIGN REQUIREMENTS                                         | 35 |
| 5.4       | FIRE-RESISTANCE PERIODS FOR BEAMS                           | 35 |
| 5.5       | FIRE-RESISTANCE PERIODS FOR SLABS                           | 37 |

| 5.7           | FIRE-RESISTANCE PERIODS FOR WALLS                        | 40        |
|---------------|----------------------------------------------------------|-----------|
| 5.8           | FIRE-RESISTANCE PERIODS FROM FIRE TESTS                  | 43        |
| 5.9           | PREDICTION OF FIRE-RESISTANCE PERIODS                    | 44        |
| 5.10          | INCREASE OF FIRE-RESISTANCE PERIODS BY USE OF INSULATING |           |
|               | MATERIALS                                                | 44        |
| 5.11          | RECESSES FOR SERVICES IN WALLS                           | 46        |
| 5.12          | CHASES                                                   | 46        |
|               |                                                          |           |
| SECTIO        | N 6 DESIGN PROPERTIES OF MATERIALS                       |           |
| 6.1           | PROPERTIES OF CONCRETE                                   | 48        |
| 6.2           | PROPERTIES OF REINFORCEMENT                              | 52        |
| 6.3           | PROPERTIES OF TENDONS                                    | 53        |
| 6.4           | LOSS OF PRESTRESS IN TENDONS                             | 55        |
|               |                                                          |           |
| SECTIO        | N 7 METHODS OF STRUCTURAL ANALYSIS                       |           |
| 7.1           | GENERAL                                                  | 59        |
| 7.2           | SIMPLIFIED METHOD FOR REINFORCED CONTINUOUS BEAMS AND    |           |
|               | ONE-WAY SLABS                                            | 62        |
| 7.3           | SIMPLIFIED METHOD FOR REINFORCED TWO-WAY SLABS SUPPORTED |           |
|               | ON FOUR SIDES                                            | 63        |
| 7.4           | SIMPLIFIED METHOD FOR REINFORCED TWO-WAY SLAB SYSTEMS    |           |
|               | HAVING MULTIPLE SPANS                                    | 66        |
| 7.5           | IDEALIZED FRAME METHOD FOR STRUCTURES INCORPORATING      |           |
|               | TWO-WAY SLAB SYSTEMS                                     | 69        |
| 7.6           | LINEAR ELASTIC ANALYSIS                                  | 71        |
| 7.7           | ELASTIC ANALYSIS OF FRAMES INCORPORATING SECONDARY       |           |
|               | BENDING MOMENTS                                          | 74        |
| 7.8           | RIGOROUS STRUCTURAL ANALYSIS                             | 74        |
| 7.9           | PLASTIC METHODS OF ANALYSIS FOR SLABS                    | 75        |
| 7.10          | PLASTIC METHODS OF ANALYSIS OF FRAMES                    | 75        |
|               |                                                          |           |
| SECTIO        | N 8 BEAMS FOR STRENGTH AND SERVICEABILITY                |           |
| 8.1           | STRENGTH OF BEAMS IN BENDING                             | 76        |
| 8.2           | STRENGTH OF BEAMS IN SHEAR                               | 80        |
| 8.3           | STRENGTH OF BEAMS IN TORSION                             | 85        |
| 8.4           | LONGITUDINAL SHEAR IN BEAMS                              | 87        |
| 8.5           | DEFLECTION OF BEAMS                                      | 89        |
| 8.6           | CRACK CONTROL OF BEAMS                                   | 91        |
| 8.7           | VIBRATION OF BEAMS                                       | 93        |
| 8.8           | T-BEAMS AND L-BEAMS                                      | 93        |
| 8.9           | SLENDERNESS LIMITS FOR BEAMS                             | 93        |
| <b>GEOTIO</b> |                                                          |           |
| SECTIO        | IN 9 DESIGN OF SLABS FOR STRENGTH AND SERVICEABILITY     | 05        |
| 9.1           | STRENGTH OF SLABS IN BENDING                             | 95        |
| 9.2           | STRENGTH OF SLADS IN SHEAK                               | 98<br>101 |
| 9.5           | CDACK CONTROL OF SLADS                                   | 101       |
| 9.4           | VIDDATION OF SLADS                                       | 104       |
| 9.5           | VIDRATION OF SLADS                                       | 10/       |
| 9.0           | WOWENT RESISTING WIDTH FOR UNE-WAY SLABS SUPPORTING      | 107       |
| 07            | UNCENTRATED LUADS                                        | 107       |
| 9./           | LONGH UDINAL STEAK IN COMPOSITE SLABS                    | 10/       |

| GEOTIO |                                                                                                   |     |
|--------|---------------------------------------------------------------------------------------------------|-----|
| SECTIO | IN 10 DESIGN OF COLUMINS FOR STRENGTH AND SERVICEABILITY                                          | 100 |
| 10.1   |                                                                                                   | 108 |
| 10.2   | DESIGN PROCEDURES                                                                                 | 108 |
| 10.5   | DESIGN OF SHORT COLUMNS                                                                           | 109 |
| 10.4   | CLENDEDNESS                                                                                       | 110 |
| 10.5   | SLENDERNESS                                                                                       | 111 |
| 10.0   | STRENGTH OF COLUMINS IN COMBINED BENJING AND COMPRESSION<br>DEMEODCEMENT DEOLIDEMENTS FOD COLUMNS | 115 |
| 10.7   | TDANSMISSION OF A VIAL FORCE THROUGH FLOOD SYSTEMS                                                | 110 |
| 10.0   | TRANSMISSION OF AXIAL FORCE THROUGH FLOOR STSTEMS                                                 | 119 |
| SECTIO | N 11 DESIGN OF WALLS                                                                              |     |
| 11 1   | APPLICATION                                                                                       | 120 |
| 11.1   | DESIGN PROCEDURES                                                                                 | 120 |
| 11.2   | BRACING OF WALLS                                                                                  | 120 |
| 11.5   | SIMPLIFIED DESIGN METHOD FOR BRACED WALLS SUBJECT TO                                              | 120 |
|        | VERTICAL FORCES ONLY                                                                              | 121 |
| 11.5   | DESIGN OF WALLS FOR IN-PLANE HORIZONTAL FORCES                                                    | 122 |
| 11.6   | REINFORCEMENT REOUIREMENTS FOR WALLS                                                              | 123 |
|        |                                                                                                   |     |
| SECTIO | N 12 DESIGN OF NON-FLEXURAL MEMBERS, END ZONES AND BEARING                                        | G   |
| SURFAG | CES                                                                                               |     |
| 12.1   | DESIGN OF NON-FLEXURAL MEMBERS                                                                    | 124 |
| 12.2   | ANCHORAGE ZONES FOR PRESTRESSING ANCHORAGES                                                       | 126 |
| 12.3   | BEARING SURFACES                                                                                  | 127 |
|        |                                                                                                   |     |
| SECTIO | IN 13 STRESS DEVELOPMENT AND SPLICING OF REINFORCEMENT AND                                        |     |
| TENDO  | NS                                                                                                |     |
| 13.1   | STRESS DEVELOPMENT IN REINFORCEMENT                                                               | 129 |
| 13.2   | SPLICING OF REINFORCEMENT                                                                         | 130 |
| 13.3   | STRESS DEVELOPMENT IN TENDONS                                                                     | 132 |
| 13.4   | COUPLING OF TENDONS                                                                               | 132 |
| GEOTIO | N 14 JONITE EMPEDDED ITEME EIVINGE AND CONNECTIONS                                                |     |
| SECTIO | IN 14 JOINTS, EMBEDDED HEMS, FIXINGS AND CONNECTIONS                                              | 122 |
| 14.1   | EMPEDDED ITEMS AND HOLES IN CONCRETE                                                              | 133 |
| 14.2   | EMBEDDED ITEMS AND HULES IN CONCRETE                                                              | 133 |
| 14.3   | CONNECTIONS                                                                                       | 134 |
| 14.4   | CONNECTIONS                                                                                       | 134 |
| SECTIO | N 15 PLAIN CONCRETE MEMBERS                                                                       |     |
| 15.1   | APPLICATION                                                                                       | 135 |
| 15.1   | DESIGN                                                                                            | 135 |
| 15.2   | STRENGTH IN BENDING                                                                               | 135 |
| 15.4   | STRENGTH IN SHEAR                                                                                 | 135 |
| 15.5   | STRENGTH IN AXIAL COMPRESSION                                                                     | 136 |
| 15.6   | STRENGTH IN COMBINED BENDING AND COMPRESSION                                                      | 136 |
| 10.0   |                                                                                                   |     |
| SECTIO | N 16 CONCRETE PAVEMENTS, FLOORS AND RESIDENTIAL FOOTINGS                                          |     |
| 16.1   | APPLICATION                                                                                       | 137 |
| 16.2   | ADDITIONAL DESIGN CONSIDERATIONS FOR PAVEMENTS AND                                                |     |
|        | INDUSTRIAL AND COMMERCIAL FLOORS                                                                  | 137 |
| 16.3   | RESIDENTIAL FLOORS AND FOOTINGS                                                                   | 137 |

| Page |
|------|
|------|

| SECTION 17 LIQUID RETAINING STRUCTURES—DESIGN REQUIREMENTS |                                                              |  |  |
|------------------------------------------------------------|--------------------------------------------------------------|--|--|
| SECTIO                                                     | N 18 MARINE STRUCTURES                                       |  |  |
| 18.1                                                       | APPLICATION                                                  |  |  |
| 18.2                                                       | ADDITIONAL LOADS AND ACTIONS                                 |  |  |
| 18.3                                                       | ADDITIONAL DURABILITY AND DESIGN REQUIREMENTS 138            |  |  |
| SECTION 19 MATERIAL AND CONSTRUCTION REQUIREMENTS          |                                                              |  |  |
| 19.1                                                       | MATERIAL AND CONSTRUCTION REQUIREMENTS FOR CONCRETE AND      |  |  |
|                                                            | GROUT                                                        |  |  |
| 19.2                                                       | MATERIAL AND CONSTRUCTION REQUIREMENTS FOR REINFORCING       |  |  |
|                                                            | STEEL                                                        |  |  |
| 19.3                                                       | MATERIAL AND CONSTRUCTION REQUIREMENTS FOR PRESTRESSING      |  |  |
|                                                            | DUCTS, ANCHORAGES AND TENDONS                                |  |  |
| 19.4                                                       | CONSTRUCTION REQUIREMENTS FOR JOINTS AND EMBEDDED ITEMS. 146 |  |  |
| 19.5                                                       | TOLERANCES FOR STRUCTURES AND MEMBERS146                     |  |  |
| 19.6                                                       | FORMWORK                                                     |  |  |
| APPENI                                                     | DICES                                                        |  |  |
| А                                                          | ADDITIONAL REQUIREMENTS FOR STRUCTURES SUBJECT TO            |  |  |
|                                                            | EARTHQUAKE ACTIONS                                           |  |  |
| В                                                          | TESTING OF MEMBERS AND STRUCTURES                            |  |  |
| С                                                          | REFERENCED DOCUMENTS                                         |  |  |
|                                                            |                                                              |  |  |
| INDEX .                                                    |                                                              |  |  |
|                                                            |                                                              |  |  |

#### STANDARDS AUSTRALIA

## Australian Standard Concrete structures

#### SECTION 1 SCOPE AND GENERAL

#### **1.1 SCOPE AND APPLICATION**

#### 1.1.1 Scope

This Standard sets out minimum requirements for the design and construction of concrete structures and members that contain reinforcing steel, or tendons, or both. It also sets out minimum requirements for plain concrete members.

This Standard will be referenced in the Building Code of Australia by way of BCA Amendment No. 9 to be published by 1 July 2001, thereby superseding the previous edition, AS 3600—1994, which will be withdrawn 12 months from the date of publication of this edition.

#### 1.1.2 Application

This Standard is intended to apply to concrete structures made of concrete—

- (a) with a characteristic compressive strength at 28 days  $(f'_c)$  in the range of 20 MPa to 65 MPa; and
- (b) with a saturated surface-dry density in the range  $1800 \text{ kg/m}^3$  to  $2800 \text{ kg/m}^3$ .

The Standard also applies to reinforcing steels complying with—

- (a) AS 1302, or having a yield strength  $(f_{sy})$  of 500 MPa and Ductility Class N in accordance with AS/NZS 4671. These reinforcing materials may be used, without restriction, in all applications referred to in this Standard; and
- (b) AS 1303 or AS 1304, or having a yield strength  $(f_{sy})$  of 500 MPa and Ductility Class L in accordance with AS/NZS 4671. These reinforcing materials shall not be used in any situation where the reinforcement, is expected to undergo large deformation under strength limit state conditions.

NOTE: The use of Ductility Class L reinforcement is further limited by other clauses within this Standard.

(c) Prestressing tendons complying with AS 1310, AS 1311, or AS 1313, as appropriate.

For concrete road bridges and for concrete railway bridges, HB77.5 and HB77.8, respectively, shall be used where applicable.

The general principles of concrete design and construction embodied in this Standard may be applied to concrete other than that specified above, or to concrete structures or members not specifically mentioned herein.

This Standard is not intended to apply to the design of mass concrete structures. It is also not intended that the requirements of this Standard should take precedence over those of other Australian Standards.

NOTES:

1 It is intended that the design of a structure or member, to which this Standard applies, be carried out by, or under the supervision of, a suitably experienced and competent person.

This is a free 10 page sample. Access the full version online.

A1



# The remainder of this document is available for purchase online at <u>www.saiglobal.com/shop</u>

SAI Global also carries a wide range of publications from a wide variety of Standards Publishers:

















Click on the logos to search the database online.