Australian/New Zealand Standard™

Electrical installations—Marinas and recreational boats

Part 2: Recreational boats installations

AS/NZS 3004.2:2008

This Joint Australian/New Zealand Standard was prepared by Joint Technical Committee EL-001, Boats and Boating Marinas Installations. It was approved on behalf of the Council of Standards Australia on 7 May 2008 and on behalf of the Council of Standards New Zealand on 10 October 2008. This Standard was published on 19 November 2008.

The following are represented on Committee EL-001:

Australasian Corrosion Association Canterbury Manufacturers Association New Zealand Electrical Regulatory Authorities Council Electrical Safety Organisation, New Zealand Energy Networks Association Marine Queensland National Marine Safety Committee

Keeping Standards up-to-date

Standards are living documents which reflect progress in science, technology and systems. To maintain their currency, all Standards are periodically reviewed, and new editions are published. Between editions, amendments may be issued. Standards may also be withdrawn. It is important that readers assure themselves they are using a current Standard, which should include any amendments which may have been published since the Standard was purchased.

Detailed information about joint Australian/New Zealand Standards can be found by visiting the Standards Web Shop at www.standards.com.au or Standards New Zealand web site at www.standards.co.nz and looking up the relevant Standard in the on-line catalogue.

Alternatively, both organizations publish an annual printed Catalogue with full details of all current Standards. For more frequent listings or notification of revisions, amendments and withdrawals, Standards Australia and Standards New Zealand offer a number of update options. For information about these services, users should contact their respective national Standards organization.

We also welcome suggestions for improvement in our Standards, and especially encourage readers to notify us immediately of any apparent inaccuracies or ambiguities. Please address your comments to the Chief Executive of either Standards Australia or Standards New Zealand at the address shown on the back cover.

This Standard was issued in draft form for comment as DR 07008.

Australian/New Zealand Standard[™]

Electrical installations—Marinas and recreational boats

Part 2: Recreational boats installations

Originated as part of AS 3004—1979. Previous edition part of AS/NZS 3004:2002. Jointly revised and redesignated (in part) as AS/NZS 3004.2:2008.

COPYRIGHT

© Standards Australia/Standards New Zealand

All rights are reserved. No part of this work may be reproduced or copied in any form or by any means, electronic or mechanical, including photocopying, without the written permission of the publisher.

Jointly published by Standards Australia, GPO Box 476, Sydney, NSW 2001 and Standards New Zealand, Private Bag 2439, Wellington 6020

PREFACE

This Standard was prepared by the Joint Standards Australia/Standards New Zealand Constituted Subcommittee EL-001-13, Boats and Boating Marinas Installations, on behalf of the Joint Standards Australia/Standards New Zealand Committee EL-001, Wiring Rules to supersede, in part, AS/NZS 3004:2002, *Electrical installations—Marinas and pleasure craft at low-voltage*.

The objective of this Standard is to provide designers, manufacturers, boat builders and regulators with safety requirements for small boats. This edition was prepared to update requirements for electrical installations of recreational boats in association with the issue of the new edition of AS/NZS 3000:2007.

This Standard differs from AS/NZS 3004:2002 in several areas including the following:

- 1. The Standard is now presented as two parts—Part 1 covers the electrical installations associated with marinas, and Part 2 covers the installation of electrical systems in recreational boats.
- 2. Part 1 updates wording and verification requirements.
- 3. Part 2 provides more extensive guidance for the design, installation and ongoing verification of the on-board installation.

In the preparation of this Standard special consideration was given to—

- (a) IEC 60092-507: Ed.1.0 (2000), *Electrical installations in ships*, Part 507: *Pleasure craft*
- (b) ISO 10133, Small craft—Electrical systems—Extra-low-voltage d.c. installations
- (c) ISO 13297, Small craft—Electrical systems—Alternating current installations
- (d) American Boat and Yacht Council (ABYC), E-11 a.c. and d.c. electrical systems on boats

and acknowledgement is made of the assistance received therefrom.

This Standard may be applied through legislative requirement, from a date to be set by the relevant regulating authority. If work on an installation was commenced before publication of this edition, the relevant regulatory authority or electricity distributor may grant permission for the installation to be completed under AS/NZS 3004:2002.

It is not the intention of this Standard to limit the introduction and use of emerging technologies. Designers are reminded that it is essential that the basic tenets of electrical and marine safety be addressed before any other equipment and installation design elements are considered.

Any requirements that may be applicable in Australia only or New Zealand only are indicated in the text and by a symbol in the right margin as follows:

'In Australia.....'

'In New Zealand.....'

The word 'shall' introduces a requirement that is to be followed strictly in order to comply with the Standard. The word 'should' introduces a suggestion or recommendation only.

Statements expressed in mandatory terms in notes to tables and figures are deemed to be requirements of this Standard.

The terms 'normative' and 'informative' have been used in this Standard to define the application of the appendix to which they apply. A 'normative' appendix is an integral part of a Standard, whereas an 'informative' appendix is only for information and guidance.

Page

CONTENTS

SECTIO	N 1	SCOPE AND GENERAL	
1.1	SCC	DPE	5
1.2	APP	LICATION	6
SECTIO	N 2	REFERENCED DOCUMENTS	7
SECTIO	N 3	DEFINITIONS	
3.1	GEN	VERAL	10
3.2	d.c.	SYSTEMS OF DISTRIBUTION	11
3.3	a.c.	SYSTEMS OF DISTRIBUTION	11
3.4	PRC	DTECTION	11
3.5	EQU	JIPMENT	13
SECTIO	N 4	GENERAL REQUIREMENTS	
4.1	RAT	TINGS	15
4.2	AM	BIENT AIR AND COOLING WATER TEMPERATURE	15
4.3	INC	LINATION OF BOAT	15
4.4	VOI	LTAGE AND FREQUENCY VARIATIONS	16
4.5	ELE	CTRICAL POWER SOURCES	17
4.6	EQU	JIPMENT	20
4.7	EQU	JIPMENT CONSTRUCTION	22
4.8	PLU	IGS AND SOCKET-OUTLETS	24
4.9	BAT	TTERY INSTALLATION	25
4.10	BAT	TTERY CHARGERS	26
4.11	INT	ERNAL COMMUNICATION CIRCUITS	26
4.12	ELE	CTRICAL APPARATUS FOR EXPLOSIVE GAS ATMOSPHERES	26
4.13	ELE	CTRICAL FITTINGS AND CABLES ATTACHED TO STRUCTURES OF	
	AN(OTHER METAL	27
4.14	NAV	VIGATION LIGHTS SUPPLY	27
4.15	LUN	/INAIRES	27
4.16	ELE	CTRICAL HEATING AND COOKING APPLIANCES	27
4.17	MA	GNETIC COMPASSES	27
SECTIO	N 5	DISTRIBUTION SYSTEMS	
5.1	d.c.	DISTRIBUTION SYSTEMS	28
5.2	STA	NDARD a.c. DISTRIBUTION SYSTEMS	28
5.3	EQU	JIPOTENTIAL BONDING CONDUCTORS	29
5.4	BAI	LANCE OF LOADS IN THREE-PHASE a.c. SYSTEMS	30
5.5	SHC	ORE CONNECTION ARRANGEMENTS	30
5.6	SWI	TCHBOARD	33
SECTIO	N 6	PROTECTION AGAINST ELECTRIC SHOCK IN a.c. SYSTEMS WITH	
VOLTA	GE E	XCEEDING 50 V	
6.1	PRC	DIECTION AGAINST DIRECT CONTACT	35
6.2	AU	TOMATIC DISCONNECTION OF SUPPLY TO FINAL SUBCIRCUITS OR	
	EQU	JIPMENT	35
6.3	EAF	RTHED NEUTRAL SYSTEMS	35
6.4	NO	N-NEUTRAL EARTHED SYSTEM (IT TYPE SYSTEM)	35
6.5	USE	C OF CLASS II EQUIPMENT	36
6.6	UNA	ACCEPTABLE MEASURES AGAINST ELECTRIC SHOCK	36

SECTIC	ON 7 PROTECTION AGAINST OVERCURRENT	
7.1	GENERAL	37
7.2	CHARACTERISTICS OF PROTECTIVE DEVICES	37
7.3	d.c. SYSTEM	37
7.4	a.c. SYSTEM	38
7.5	GENERATORS	38
7.6	TRANSFORMERS	38
7.7	MOTOR PROTECTION	39
OFOTIC		
SECTIC	ON 8 PROTECTION AGAINST EARTH LEAKAGE CURRENT IN a.c. SYSTEMS	10
8.1	GENERAL	40
8.2	SELECTION OF DEVICES FOR PROTECTION AGAINST EARTH LEAKAGE.	40
SECTIO	ON 9 CABLES	
9.1	SELECTION OF CABLES FOR MARINE ENVIRONMENT	41
9.2	CABLE SELECTION AND INSTALLATION	41
9.3	PROTECTIVE COVERINGS	41
9.4	DETERMINATION OF THE CROSS-SECTIONAL AREAS OF CONDUCTORS .	41
SECTIC	NI 10 CADLE AND WIDING INSTALLATION AND TEDMINATION	
	IN TO CABLE AND WIKING INSTALLATION AND TERMINATION	10
10.1	CADLE TEDMINATIONS	40
10.2	CABLE TERMINATIONS	40
10.5	CABLE AND CONDUCTOR INSTALLATION	4/
10.4	d.c. AND a.c. CABLING AND WIKING SEGREGATION	48
10.5		48
10.6	LIGHTNING PROTECTION	49
SECTIO	ON 11 VERIFICATION	
11.1	GENERAL	50
11.2	EARTHING	50
11.3	INSULATION RESISTANCE	50
11.4	SWITCHGEAR AND CONTROLGEAR	51
11.5	VOLTAGE DROP	51
11.6	INTERNAL COMMUNICATION CIRCUITS	51

APPENDICES

А	RECREATIONAL BOATS OVER 24 METRES AND LARGER VESSELS	
	OPERATIONAL IN OFFSHORE WATERS	52
В	SHORE SIDE ARRANGEMENTS	55
С	PERIODIC TESTING	59
D	RECREATIONAL BOATS WARRANT OF ELECTRICAL FITNESS	
	CERTIFICATION FORM—NEW ZEALAND ONLY	67

STANDARDS AUSTRALIA/STANDARDS NEW ZEALAND Australian/New Zealand Standard Electrical installations—Marinas and recreational boats

Part 2: Recreational boats installations

SECTION 1 SCOPE AND GENERAL

1.1 SCOPE

This Part of AS/NZS 3004 specifies requirements for the design, construction and installation of electrical systems in recreational boats that have a length of up to 50 m, and are designed for use on inland waters or at sea. It is not intended to apply to small boats equipped with a battery supplying circuits for engine starting and navigation lighting only that are recharged from an inboard or outboard engine driven alternator.

NOTES:

- 1 Attention is drawn to the *International Regulations for the Preventing of Collisions at Sea*, 1972 (COLREG) as amended, which govern specific requirements for navigation lights for boats.
- 2 Attention is drawn to regulations in Australia and New Zealand which govern specific requirements for the safety of electronic and electrical equipment; electromagnetic compatibility requirements; marine safety requirements; energy and water usage; telecommunications and radio communication requirements.
- 3 For high speed boats, attention is drawn to the Australian National Standard for Commercial Vessels (NSCV), Part F: Special vessels, Section 1: Fast craft and the New Zealand Maritime Rules.

This Standard applies to the following types of d.c. and a.c. electrical systems, individually or in combination:

(a) Direct current systems which operate at a nominal voltage not exceeding 1500 V.

NOTE: For example, for many small recreational boats this will be the main electrical system. Alternatively a boat equipped with an a.c. system as its principal electrical system may be also equipped with a d.c. system for navigation and communications equipment supplied from batteries.

(b) Single-phase alternating current systems which operate at a nominal voltage not exceeding 1000 V.

NOTE: Such a system may be the principal electrical power system of a recreational boat, or a system which may only be energized when connected to a shore supply, a.c. extra-low voltage, safety extra-low voltage etc. circuits may also comprise part of a single-phase a.c. system. A boat may also be equipped with d.c. system(s) as in (a) above.

(c) Three-phase alternating current systems which operate at a nominal voltage not exceeding 1000 V.

NOTE: Three-phase systems are likely to be the principal electrical power system of a recreational boat's electrical installation. Such a boat may also be equipped with single-phase a.c. subsystem(s) and d.c. subsystem(s).

Recreational boats whose electrical installation complies with the requirements of an international maritime classification society which is recognized by AMSA or New Zealand Maritime can be used to show compliance where appropriate with this Standard.

NOTE: Exemptions based on the above paragraph must be supported by appropriate and current certification.

The remainder of this document is available for purchase online at

www.saiglobal.com/shop

SAI Global also carries a wide range of publications from a wide variety of Standards Publishers.

Click on the logos to search the database online.